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Cluster computers—parallel com-
puters built from commodity processors—are
becoming the predominant supercomputer
architecture because of their combined scal-
able performance and attractive price. As of
June 2005, 61 percent of the world’s top-500
supercomputers were clusters (http://www.
top500.org). This is a significant paradigm
shift from a few decades ago, when super-
computers were special purpose, like the Cray
vector machines, and designers built them
from expensive, custom components.

Clusters that use commodity processors still
require high-performance, low-latency net-
works, if their applications are fine-grained,
or if the cluster has many processors. Clusters
can use commodity networks, such as Gigabit
Ethernet, but these fall short in many scala-
bility and performance aspects.1

Consequently, the core of several success-
ful cluster-based supercomputers is a high-
performance network. On the one hand, this
component interfaces with standard I/O
buses, such as peripheral component inter-
connect (PCI), its extended version (PCI-X),
and PCI-Express, thus leveraging commodi-
ty computing nodes. On the other hand, it
provides scalable performance and cluster

aggregation through specialized protocols.2

Thus, in a sense, the high-performance net-
work in a cluster computer is the computer
because it largely defines achievable perfor-
mance, widening the range of the applications
a cluster can efficiently execute, as well as
defining its scalability, fault tolerance, system
software, and overall usability.

Because of their key performance-enhanc-
ing role, cluster computer networks must meet
high standards in four design aspects—per-
formance, scalability, reliability, and program-
mability. The “Four Critical Design Criteria”
sidebar describes these in more detail.

QsNetII, the latest generation Quadrics
interconnect, meets these standards, extend-
ing previous work on high-performance net-
works with an aggressive design to achieve
ultra-low latency. At the design’s core are two
ASICs: Elan4 and Elite4. Elan4 is a commu-
nication processor that forms the interface
between a high-performance multistage net-
work and a processing node with one or more
CPUs. Elite4 is a switching component that
can switch eight bidirectional communications
links, each of which carrying data in both
directions simultaneously at 1.3 Gbyte/s. Two
virtual channels share the link bandwidth.
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Cluster computing networks must meet four main criteria.

High performance
A high-performance network is typically (and often, superfi-

cially) described in terms of point-to-point latency and bandwidth,
although other dimensions—such as the degree of overlap
between computation and communication—play an equally
important part in cluster supercomputers. Scientific codes often
use nonblocking communication, and ideally the network and the
network interface can make progress with as little processor
overhead as possible. Indeed, several research and industrial
projects have shown that the network interface and software
communication layer are the major performance bottlenecks.1

To reduce this overhead, researchers have proposed several
user-level communication models. The designers of Meiko CS-22

and Myrinet3 pioneered many of the techniques that high-per-
formance networks now use, such as zero-copy communication,
reliable transmission at the link level, and processing capabili-
ties in the network interface. U-Net tried to provide high-perfor-
mance, user-level communication in a broad spectrum of
networks.4 Other important research projects in user-level com-
munication are FM,5 Active Messages,6 Basic Interface for Par-
allelism,7 Virtual Memory-Mapped Communication,8 and PM.9

Computer recently published a detailed survey of user-level, net-
work interface protocols and related design issues.10

Scalability
Many parallel applications display a bulk-synchronous behav-

ior. The processing nodes access the network according to a glob-
al, structured communication pattern. They can, for example,
execute a global permutation, a gather/scatter phase with a lim-
ited set of neighbors, a global synchronization, or a personalized
all-to-all information exchange. All these collective patterns are
sensitive even to minor bottlenecks—the slowest component
will determine the speed of the whole communication pattern—
so scalable hardware support for collective communication is a
central issue. Recently, hardware support for system software,
resource management, parallel file systems, system monitoring,
fault-tolerance, and so on has drawn interest among those in the
high-performance network community. The common perception
is that parallel machines cannot scale to a large number of nodes
without hardware support for a few basic mechanisms, such as
broadcasting data and performing atomic queries.11,12

Reliability
In a machine with thousands of processing nodes, the mean

time between failures (MTBF) is typically only a few hours. Thus,
the network requires hardware support to detect message cor-
ruption through cyclic redundancy checks (CRCs) and to auto-
matically retransmit packets. Although designers could

implement these functions at a higher level, for example in the
system software, the overhead would be substantial.13

Programmability
Message-passing protocols such as the message-passing inter-

face (MPI) and almost all the other system software components
require substantial protocol processing when they exchange mes-
sages. Offloading much of this overhead to a network processor
is an attractive approach to optimizing latency, reducing the pro-
tocol’s complexity, and effectively overlapping communication
with computation. The possibility of programming the network
interface at user level, by loading user-level threads without
rebooting the machine, provides an extra degree of flexibility that
makes it easier to rapidly develop network protocols.
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QsNetII supports broadcast transmission across
selected node ranges as well as point-to-point
connectivity between arbitrary nodes.

The network’s main features are

• Low latency and high bandwidth. Elan4
minimizes the latency from the message-
passing interface (MPI) by providing spe-
cialized units to quickly pipeline small
messages into the network, perform pro-
tocol processing, and signal completion of
the communication. It is designed to use
almost all the bandwidth in the PCI-X bus.

• Scalability to thousands of nodes. Elan4 is
designed to scale to thousands of nodes.
Systems like ASC Thunder and ASC Q

can execute the most common collective
communication primitives (barrier,
broadcast, and reduce) in just a few
microseconds.3,4

• 64-bit internal architecture. The network
can fully support a 64-bit virtual address
space.

• Reliable transmission protocol. Elan4
implements a reliable transmission pro-
tocol in hardware and can thus detect
several faults, route the packets around
faulty switches, and retransmit packets if
they become corrupt.

• Commodity interface. The network uses
PCI-X, a commodity I/O interface.

Elan4
Figure 1 shows the Elan4. The chip sup-

ports 64-bit virtual addresses, generates and
accepts packets to and from the network, and
provides local processing power to implement
the high-level message-passing protocols that
parallel processing requires. Figure 2 is a func-
tional diagram of the Elan4 chip. Table 1 gives
the features of the major logic blocks.

Elan4’s internal architecture lets data flow
from the PCI-X bus directly to the output
link, thus achieving very low latency and high
bandwidth, which is due largely to the STEN
processor and two powerful abstractions pro-
vided to the communication libraries—the
command and input queues.

Protection and latency
A primary design objective for Elan4 was to

reduce the latency of protected Unix commu-
nication from one processing node to another.
Traditionally, the operating system provides
that protection as well as multiplexing, both of
which add significant latency and overhead to
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Figure 1. Elan4 is a communication proces-
sor that forms the interface between a high-
performance multistage network and a
processing node. It is 7.5 mm × 7.5 mm, has
approximately six million transistors, con-
sumes less than 4W, and is packaged in a
512 enhanced plastic ball grid array (EPBGA).

Conf., Lecture Notes in Computer Science
1225, Springer-Verlag, 1997, pp. 708-717.

10. A.F. Raoul, T.R. Bhoedjang, and H.E. Bal,
“User-Level Network Interface Protocols,”
Computer, vol. 31, no. 11, Nov. 1998, pp.
53-60.

11. E. Frachtenberg et al., “STORM: Lightning-
Fast Resource Management,” Proc. Super-
computing Conf., IEEE CS Press, 2002, 
pp. 1-26.

12. J. Fernández, E. Frachtenberg, and F. Petri-
ni, “BCS MPI: A New Approach in the Sys-
tem Software Design for Large-Scale Parallel
Computers,” Proc. Supercomputing Conf.,
IEEE CS Press, 2003, p. 57.

13. R.L. Graham et al., “A Network-Failure-Tol-
erant Message- Passing System for Teras-
cale Clusters,” Proc. Supercomputing Conf.,
2002, pp. 77-83.

continued from p. 3



operating-system-controlled communication.
With the Elan4, many different processes can
multiplex their operations
into the same network hard-
ware at the sending end.
Other Elan4s then demulti-
plex and deliver the data to the
correct virtual address space at
the receiving end. The chip
removes the unnecessary data
buffering that almost always
adds communication latency.
Multicast or broadcast opera-
tions can significantly improve
the performance of message-
passing collective operations,
such as scatter, gather, reduce,
and barrier synchronization.
These types of operations can
exploit Elan4’s ability to con-
struct complex packets using
remote Boolean tests of mem-
ory locations, remote input
queuing, and remote syn-
chronization. Elan4 has devel-
oped a very low-latency
method of constructing and

issuing these packet types from either a main
CPU or from packets that the network receives.
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Figure 2. Functional diagram of Elan4. Table 1 lists the functional block characteristics.

Table 1. Primary logic blocks in Elan4 and their characteristics.

Logic block Characteristics
64-bit RISC microprocessor Thread processor with 16-Kbyte instruction cache, 64- × 64-bit registers, 65-ns context 

switching, eight concurrent PCI reads, and one-cycle local load.
Short transaction engine Processes short messages, automatic retries, remote Boolean tests, and multicast
(STEN) processor operations.
Command processor Defines a virtual command queue interface, uses Q ptr caching and head of Q cache, has 

rich instruction set, and processes commands at up to 1 Gbyte/s.
Event processor Process synchronization, writes command Q or main memory.
Input processor Decodes and executes transactions from network.
32-Kbyte data cache (D cache) Four-way set-associative; two read ports, one write port, and one cache fill port—

all 1.6 Gbyte/s each; up to four pipelined cache fills that speed up accesses to the 
synchronous, dynamic RAM (SDRAM) interface.

166-MHz DDR SDRAM 72-bit data, including full error-correction code (ECC) logic; 64-bit pipelined interface; 
128-byte write buffer; and 128-byte read buffer.

Memory-management unit (MMU) Translates 64-bit virtual addresses into either 31-bit local SDRAM physical addresses or 
50-bit physical addresses. These addresses have four possible values for the top 14 bits 
of the 64-bit PCI-X master address or a local high-performance command queue address. 
The MMU has two translation lookaside buffers (TLBs) and 128-page table entries.

Direct memory access (DMA) engine Two packet assemblers and a pipelined prefetcher.
Communication logic Network interface connection, 1.3 Gbyte/s each way.
133-MHz PCI-X bus Read, write bandwidth control; adjacent write block merging; 2-KByte read buffers; 

up to 12 split reads; big- and little-endian support.



Short transaction engine processor
As Figure 2 shows, the STEN processor is

closely integrated with the command proces-
sor. The main, input, and thread processors
use it to assemble short packets for transmis-
sion into the network. Quadrics designers
optimized STEN for short reads and writes,
and for protocol control. It can handle two
outstanding packets for each command
queue, and packets are pipelined to provide
very low latencies.

Packet generation
The PCI-X bus can deliver good bandwidth

with long burst operations, but minimizing
latency is challenging. There are two ways to
take data from a node. The Elan4 can perform
master PCI-X read operations on the node’s
main memory, or the node CPUs can issue
writes directly to the PCI-X memory address
space. A PCI-X master read typically has a
read latency of 750 ns, but it can deliver over
900 Mbytes/s of bandwidth with long burst
operations. Direct CPU writes to the PCI-X
memory address space have a much lower
latency for transferring data values, but the
bandwidth can be poor because the writes
tend to produce very short bursts.

Some CPU architectures, such as an Intel Ita-
nium Tiger system, can improve this bursting;
program stores directed to the PCI-X bus can

generate bursts of up to 128 bytes. A bandwidth
of 600 Mbytes/s is possible on such an archi-
tecture, but only by allowing a relaxed order for
the writes, which lets the CPU’s write buffer
collect several writes. AMD’s Opteron can pro-
duce 64-byte bursts using relaxed-order mode,
which can deliver up to 450 Mbytes/s of PCI-
X write bandwidth. However, most CPUs can-
not guarantee the write order if a CPU interrupt
or an instruction-cache miss occurs.

Elan4 provides two mechanisms for send-
ing data. For large messages, the Elan4 direct
memory access (DMA) engine can read from
the PCI-X bus at up to 920 Mbytes/s. The
DMA engine can pipeline two DMAs, which
means that one DMA’s completion overlaps
the next DMA’s startup. This pipelining main-
tains a high bandwidth between DMAs, but
incurs 750 ns of read latency, yielding poor
application bandwidth for small messages.
This is why Elan4 uses the STEN processor
for small messages, as we described earlier.

Command queues
Elan4 has a command processor that man-

ages a set of protected command queues such
that any process can write a sequence of com-
mands with data to a command queue.
Restricting a queue to a small item size is the
lowest-latency method for transferring com-
mands with data from a source to a sink that
are operating asynchronously with each other.
The source can add data while the queue is
not full, the sink can consume data when the
queue is not empty, and each can operate at its
own rate. With Elan4’s queue caching, up to
8,000 command queues can be active at any
one time. Because the Elan4 maintains run
queues of all active queues and shares the
extraction of each queue’s commands, there
is no practical limit to the command queues
that the Elan4 device driver can allocate.
Command queues provide protected access to
the Elan4 hardware—protection that the
operating system call typically provides.

Figure 3 shows the command queue model.
A protected process “owns” insertion into the
queue, while the Elan4 command processor
owns extraction. The command queue appears
as a page of PCI-X physical address space, which
the Elan4 device driver maps into the user
process’ virtual address space. All writes into this
page from a user process will result in addition-
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Figure 3. Command-queue model in Elan4. Queue caching allows up to 8,000
simultaneously active command queues. Processes, shown at the left, run at
the same time on different CPUs and on the Elan4, and command queues
keep data ordered and protected by running in parallel with one another.



al data to the corresponding command queue.
If the user processes break the command queue’s
usage rules (about queue overflow, bad address-
es, and so on), only that command queue will
enter an error state. All other command
queues—the system’s and those of other user
processes—can continue to operate correctly.

This protection is a significant improvement
over previous versions of the Elan and other
high-performance networks, and it greatly
simplifies the device driver because there is no
need to quickly deal with an errant process.
Elan4’s command processor maintains the
head of the currently active command queue
in a fast on-chip RAM, and the latency
through an empty queue is at most two or
three cycles. The command processor can rec-
ognize out-of-order writes, and it will wait
until the gaps are filled before trying to use the
data. Consequently, when a CPU receives
PCI-X writes, it can use the higher bandwidth
relaxed-ordering mode on an Elan4 command
queue, yet still process the command queue
data in the correct order. Using a page of vir-
tual memory, the Elan4 device driver can map
command queues to processes that operate on
the Elan4, including the thread and event
processors, and network write data. The result
is a unified and protected model for starting
all Elan4 operations.

Command processor
The command processor initiates opera-

tions; it

• generates network packets issued to the
STEN processor,

• schedules new DMA descriptors to the
DMA processor and new threads to the
thread processor,

• executes small copies and small writes,
• controls Elan4 events (synchronization

primitives),
• issues interrupts to the main processor,

and
• executes simple conditional behavior on

the basis of network acknowledgments.

Programmers can combine operations to
build more complex ones. If the command
queue is generating network packets through
the STEN processor, it will automatically han-
dle network retries without further user inter-

vention. The STEN processor will correctly
close half-generated packets using a timeout
for process scheduling or an interrupt. The
command processor will accept simultaneous
writes from a node’s individual CPUs and
local writes from other Elan4 execution units.
It will ensure the correct delivery of these
writes to their own command queues. It will
accept command data at up to 1 Gbyte/s from
a node that can achieve long PCI-X pro-
grammed I/O (PIO) write bursts. A block of
contiguous SDRAM in the Elan4 local mem-
ory backs each command queue to be used if
Elan4 must automatically resend packets
because of network discards. Consequently,
there is no need for the queue to rewrite data.
Four programmable command queue depths
range from 1 to 512 Kbytes.

If a user process running on any of the
node’s CPUs must write into another node’s
memory, it can do so simply by writing the
command sequence with the data values need-
ed to generate a small write packet directly to
a command queue. The procedure requires no
operating-system intervention, and the oper-
ation is truly protected against other process-
es—system and user—running on the same
CPU or others of the same node. It can take as
little as 82 ns from the writes arriving at the
Elan4 on the PCI-X bus to the fully formed
packet with physical routes and 32-bit CRCs
leaving on the Elan4 output link. The packet
head can be routing across the network before
the tail data has left the main CPU. In this way,
the command queues satisfy the very low-
latency requirement for small messages.

Event processor
The Elan4’s synchronization engine, the

event processor, controls the action to be per-
formed when an operation completes, which
in turn controls the signaling of an operation’s
completion. The data structure or “descriptor”
held in memory controls the event processor.

When an event fires, the event descriptor
defines a copy of data up to 2 Kbytes to be
written to a user-defined virtual address. This
virtual address could map to a command
queue, enabling a very low-latency command
sequence to execute in response to network
stimulus—without the need to start a thread
running on the thread processor. This feature
is useful in network scatter/gather operations.
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The event descriptors can gather incoming
data from the network and then copy it into
separate packets routed to several network des-
tinations. Through this method, Elan4 can
construct more than four million packets per
second and inject them back into the network.

Packet receipt
When Elan4 receives packets from the net-

work, it delivers the data directly into the user’s
address space without any operating-system
intervention, according to a write-based net-
work protocol. All network transactions include
a network context number, which Elan4 uses
to identify the destination process’s virtual
address space, and most have a destination 64-
bit virtual address value. Elan4 has a full mem-
ory management unit (MMU) with two
translation look-aside buffers (TLBs) that can
hold 128 translations or page table entries
(PTEs). It also has a TLB fill engine that will
automatically fill the TLBs from large hash
tables defined in its local SDRAM. To manage
hash conflicts, it uses chained lists from the hash
entries. If Elan4 receives a network packet with
no valid translation for the hash tables, it will
generate an interrupt back to the Elan4 device
driver running on a main CPU. The device dri-
ver finds the translations, updates the hash table,
and restarts the faulted Elan4 process. This
page-demanded virtual operation is similar to
memory allocation for a normal Unix process
and is invisible to the faulted process.

Elan4’s MMU translates 14 bits of context
and a full 64 bits of address to any 64-bit PCI-
X physical address. It supports eight page sizes
and lets two sizes be active simultaneously.
The Elan4 device driver can define main-
memory pages as little or big endian. The
TLB fills are pipelined, and other units can
continue to use the TLBs during the fills.

Input queues
MPI is a standard communication library

common to many parallel applications. With
MPI point-to-point communication can take
place only with matching sends and receives,
in which every send must have a correspond-
ing receive. Problems arise when a sending
process posts a send before a receiving process
issues the corresponding receive. Elan4 design-
ers had several options for solutions. One was
for the receiving process to reject the packets

in the hope that the sending process would
retransmit them later (after the receiving
process issued a receive). The drawback of this
approach is that it wastes network bandwidth,
and the retry might not occur until long after
the receiving process issues the receive, sub-
stantially increasing communications latency.
Another option was to generate an interrupt
to the main processor. The main CPU could
then buffer the data and perform a copy to the
correct locations when the receiving process
issues the receive. This option is also undesir-
able, however, because an interrupt can be very
expensive and disruptive.

A third approach—the one Elan4 uses for
MPI—is to buffer and process the posted send
data and then perform the final copy after the
receiving process issues the receive. This
approach adds no load on the network or main
processor, and produces the lowest possible
latency. Many scientific applications, benefit
from such an approach, since they are extreme-
ly sensitive to MPI communication latency.5

Elan4’s input queue construct lets it receive
data into a queue in its local memory. When
new data goes into the input queue, the input
processor (with proper programming) can
start a local thread running on Elan4’s thread
processor. The input queue provides flexible
buffering, and the thread processor performs
the match operation to connect all sends to
their corresponding receives. The thread
processor manages the list of posted receives
and performs the copy operation required for
a posted write.

If a sending process issues a very large send,
the MPI code sends only a descriptor to the
receiving Elan4. The thread processor can
then construct a DMA descriptor, which is
posted back to the sending Elan4 so the oper-
ation is completed with an efficient DMA
write. The thread processor has up to 3.2
Gbytes/s of bandwidth available through
block load/store instructions. Any processor
can start a thread by writing the program
counter and first six registers to a command
queue. In as little as 65 ns, the thread sched-
uler can swap the state of a thread running in
one context for the state of another thread
running in another context.

The thread processor is closely coupled to
the on-chip cache that acts as a data cache (D
cache). It uses command queues to inject con-
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trol packets into the network.

Elite4 and physical links
Quadrics built the QsNetII network using

Elite4s arranged in a radix-4 fat-tree network,
with each switch having four links down and
one to four links up (to higher network stages).
Designers selected the fat-tree topology for
three reasons: It affords many alternative routes
between nodes, the scaling in bisectional band-
width is linear with network growth, and
implementing global network operations, such
as broadcast,6,7 is relatively easy.

Figure 4 shows the Elite4’s layout, and Fig-
ure 5 shows the optical interface with a 16-
way switch. The physical link for Elite4
consists of 10 low-voltage differential signal-
ing (LVDS) pairs in each direction. The com-
munication logic sends a clock with the data
and uses it to latch the data on the receiver. It
then aligns the data to a local clock derived
from the same frequency source but with an
arbitrary phase alignment. Each receiver data
bit has a digital delay. The delay automatical-
ly adjusts during a training process to ensure
that the input latch samples the data in the
middle of the data eye.

For links longer than 12 m, the network
supports a fiber option, which consists of 12-
bit parallel optical transceivers and a pair of
12-way parallel fiber ribbons. Because optical
receivers require DC-balanced signals, both
Elan4 and Elite4 can optionally use 4b5b
encoding, which also reduces the range of
operating frequency for signal transmission.
Table 2 shows peak link performance for
unencoded and 4b5b-coded signaling.

Performance evaluation
We have measured QsNetII’s perfor-

mance in a variety of communications and
applications benchmarks and parallel appli-
cations. In one evaluation, we used a clus-
ter of Intel Itanium 2s with the company’s
8870 chipset. In others, we used a variety
of platforms.

Basic performance
Figure 6a shows the results of measuring

the network’s basic bandwidth in a simple
ping test, in which two nodes communicate
between each other in turn. The network
delivered 912 Mbytes/s with the unidirec-

tional ping, representing over 98 percent of
the achievable peak bandwidth. It delivered
900 Mbytes/s with bidirectional traffic,
which is key to many parallel applications.

In tests on multiple platforms, the MPI
short-message latency was only 1.28 µs on the
AMD Opteron, and 1.70 µs on the Intel
Xeon EM64T, as we describe later. As far as
we know, that is the lowest latency any com-
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Figure 4. Elite4, an eight-way switch compo-
nent. We implemented the approximately
8.2 mm × 8.2 mm chip in a 0.18-µm, five-
level metal CMOS process; it used a 608-
ball EPBGA package and dissipates
approximately 6 W.

(a) (b)

Figure 5. Elite4’s optical interface (a) and an interface with a 16-way switch (b).

Table 2. Peak link performance for two types of encoding.

Performance parameter 4b5b Unencoded
Link data rate (Mbps per wire) 1,333 1,333
Rate after 5/4 (Mbps per wire) 1,066 NA
Peak data (Mbytes/s) 1,066 1,333
Sustainable bandwidth after protocol (Mbytes/s) 928 1,160



modity, high-performance interconnection
network has achieved to date.

Table 3, which gives the write latency break-
down on a 4,096-node machine, shows that
the latency is less than one microsecond; the
I/O buses take up the rest of the latency.

Figure 7 outlines the steps in the commu-
nications protocol. The DMA engine can
perform a remote DMA from a source virtu-
al address to a destination virtual address of
two processes belonging to the same parallel
job, without any intermediate copy or proces-
sor intervention. This capability is largely
thanks to the MMU in the network interface,

which mirrors the one in the host. Quadrics
designed the Elan4 DMA engine to run effi-
ciently with the PCI-X interface, and it can
issue reads of up to 512 bytes as split trans-
actions to enable pipelining.

The typical execution of a remote DMA has
seven steps:

1. The user code, running on a main CPU,
generates a DMA descriptor and writes
it directly to the PCI-X bus and into a
command queue.

2. If the DMA processor is idle, the com-
mand processor copies the descriptor into
the DMA processor’s registers. If it is
busy, with another DMA, it copies the
descriptor onto a DMA run queue.

3. The DMA prefetch processor takes the
virtual source address and issues reads up
to 512-byte blocks, using the MMU to
translate the virtual addresses into phys-
ical main memory addresses. It then
wakes up one of the two packet-assem-
bler processors. The prefetch processor
continues to fetch DMA data from the
PCI-X bus.

4. When the DMA packet assembler wakes
up, it fetches the physical-network routes
using the virtual destination’s process
number read from the DMA descriptor.
It then starts to generate suitably sized
packets for the network. A packet assem-
bler byte-realigns the data streaming
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Figure 6. Basic performance in a simple ping test: bandwidth (a) and latency (b).

Table 3. Eight-byte write latency on a 4,096-node machine 

with 50 meters of cable.

Network or protocol component Latency (ns) Total latency (ns)

Cable 200
Delay per meter 4
50-meter delay 200

Elite4 231
Switch latency 21
11 switches (4,096 nodes) 231

Elan4 240
Input delay 157.5
Command processor delay 82.5

MPI tag matching
Thread processor latency 300 300

Cable + Elite4 + Elan4 + MPI 971



from the source memory system’s PCI-X
bus and converts it to network transac-
tions, inserting the correct destination
virtual address and type.

5. The DMA processor injects the fully
assembled packets into the network,
where Elite4 chips use and remove route
values from the front to direct the pack-
ets as they move across the network.

6. When the packets arrive at the destina-
tion, the input processor decodes and
executes the packet transactions. The
MMU converts the virtual destination
address to a main-memory physical
address. The PCI-X interface merges the
separate 128-byte-block transactions into
larger block writes to improve the effec-
tive write bandwidth.

7. The event processor executes a
SetEvent at both the source and desti-
nation Elan4 to signal completion of
the DMA to other processes. If the
event fires, as a result of the SetEvent,
the programmer can use this to execute

a sequence of commands through a
command queue.

As we described earlier, QsNetII provides
hardware support for broadcast and barrier
operations. Figure 8a shows barrier time as
a function of the number of nodes. Addi-
tional network stages cause a slight increase
on power-of-4 node counts (16, 64, 256, and
so on). Figure 8b shows a bisection of the
network’s bandwidth, which we measured by
executing a collective communication pat-
tern, or complement traffic. This pattern
divides the processing nodes under test into
two groups. This is essentially a mirrored
ping test, in which each node communicates
with its complement located on the other
half of the network. The complement traf-
fic forces each message to cross the network
bisection.

Both scaling tests show excellent perfor-
mance. The barrier synchronization takes
only 3.5 µs on 512 nodes, while the bisection
tests show almost linear scaling. In an actual
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system, the PCI-X bridge primarily deter-
mines Elan4’s peak performance on DMA
read operations.

Multiple platforms
Figure 9a shows the results of tests to mea-

sure QsNetII’s sensitivity to platform. In these
tests, we evaluated the MPI bandwidth for sev-

eral combinations of proces-
sor and motherboard chipsets.

Table 4 lists the perfor-
mance results QsNetII

achieves on platforms with
AMD Opteron, Intel Itani-
um 2, and Intel Xeon
EM64T. The highest perfor-
mance measured is 912

Mbytes/s for the Xeon EM64T host machine.
In any system, many factors influence the

actual measure of MPI latency, such as the
PIO write bandwidth, the main processor
cache’s invalidate time, and the bus bridge
latency. We evaluated the latency of the three
platforms in Table 4 by sending a 0-byte mes-
sage between two nodes. As the table shows,
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Table 4. Network performance on a variety of platforms.

Remote MPI latency MPI bandwidth 
Platform DMA (ms) (ms) (Mbytes/s)
HP-DL145 G2-Opteron 0.85 1.28 881.45
Intel SR1400 JR2-Xeon EM64T 1.14 1.70 912.21
Intel SR870BN4-Itanium 2 1.6 2.73 911



the host machine’s characteristics play an
important role, with latency values ranging
from 1.28 to 2.73 µs. AMD’s Opteron
achieved the lowest latency in large part
because of its integrated memory control. For
this platform, we tested a dual-CPU system
and observed slightly higher latency from the
second CPU, which required an additional
hop to reach the PCI-X bus bridge.

All the platforms tested were either two- or
four-way symmetric multiprocessor (SMP)
nodes. Large SMP systems can display greater
latencies and greater locality effects. Figure
10a shows how the use of STEN to issue short
remote writes reduced short-message latency
on the AMD Opteron: an 8-byte remote write
latency of 1.0 µs versus 2.2 µs for the equiva-
lent DMA operation. The DMA engine uses
the PCI-X bus more efficiently, however, and
therefore above 2,000 bytes, DMAs have
lower latencies. CPU overhead also figures
into the decision of when to switch to DMAs.
Issuing a DMA has a fixed overhead of
approximately 0.5 µs, but STEN requires the
CPU to copy the data, which causes the CPU
overhead to be proportional to the message
length. STEN also aids in performing a series
of short get operations.

As Figure 10b shows, the throughput of sin-
gle double-word reads to random destinations
across the network is 2.3 µs. Batching is one
way to increase the rate of issuing double-
word reads to discontinuous addresses in the
same or different nodes.

Finally Figure 11 shows the performance of

a quantum chemistry application, NWChem,
running on a variety of platforms. The per-
formance of Elan4-connected Itanium 2
nodes shows a substantial improvement over
the same system with Elan3 connectivity, indi-
cating that this code strongly depends on
communications performance.

Quadrics designed QsNetII specifically to
meet the demands of supercomputing

applications. Benchmark results for real-world
applications such as NWChem are superior to
those for similar processor configurations with
different interconnects. Clearly, then, a high-
performance interconnect can both shorten
application runtime and increase scalability.
Processor performance will increase—both
through heightened clock rate and as a result of
moving to multiple processor cores per device.
The challenge for interconnect designers is to
track that performance increase in both band-
width and latency improvements. MMIICCRROO
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